Федеральное государственное автономное образовательное учреждение высшего образования «Московский физико-технический институт (национальный исследовательский университет)» Физтех-школа физики и исследований им. Ландау Кафедра проблем теоретической физики

Направление подготовки / специальность: 03.03.01 Прикладные математика и физика Направленность (профиль) подготовки: Общая и прикладная физика

ПОВЕРХНОСТНЫЕ ЭЛЕКТРОННЫЕ СОСТОЯНИЯ В ВЗП ФАЗЕ ВЕЙЛЕВСКИХ ПОЛУМЕТАЛЛОВ

(бакалаврская работа)

Студент: Зверевич Дмитрий Викторович

(подпись студента)

Научный руководитель: Андреев Антон Владимирович, PhD (к.ф.-м.н.)

(подпись научного руководителя)

Консультант (при наличии):

(подпись консультанта)

Москва 2021

Аннотация

В данной работе изучается спектр поверхностных электронных состояний вейлевских полуметаллов, находящихся в ВЗП (волна зарядовой плотности) фазе. Работа состоит из трех частей.

Во введении рассказываются общие сведения о вейлевских полуметаллах, а также находится спектр арок Ферми в простейшем случае.

В первой главе был получен среднеполевой гамильтониан, описывающий ВЗП фазу в вейлевских полуметаллах.

Во второй главе, которая составляет основу этой работы, рассматривается существование и конкретный вид спектра поверхностных состояний вейлевского полуметалла, находящегося в ВЗП фазе.

Содержание

Аннотация				2
Введение				
	Вей	левски	е Полуметаллы	4
	Арк	и Ферм	ли	5
1	Волна Зарядовой Плотности в ВП			8
	1.1 Реализация ВЗП Фазы в ВП			11
2	Поверхностные Электронные Состояния			12
	2.1	Надш	елевые Состояния	14
		2.1.1	Граничные Условия для Надщелевых Состояний	15
		2.1.2	Внешняя Граница Непрерывного Спектра	16
	2.2	Подщ	елевые Состояния	17
		2.2.1	Граничные Условия для Подщелевых Состояний	18
		2.2.2	Спектр Подщелевых Состояний	18
		2.2.3	Область вблизи Ферми-Поверхности	19
		2.2.4	Слияние Двух Решений	20
		2.2.5	Нулевая Энергия	21
	2.3	Спект	р Поверхностых Состояний	21
Заключение				24
Сі	Список литературы			

Введение

Вейлевские Полуметаллы

В 1928 году Дирак написал уравнение для релятивистской волновой функции, описывающей частицу со спином $s = \frac{1}{2}$ ($\hbar = 1$):

$$i\frac{\partial}{\partial t}\Psi = H\Psi \tag{0.1}$$

Где:

$$H = c\vec{p}\vec{\alpha} + mc^2\beta \tag{0.2}$$

здесь m - это масса частицы, с - скорость света, а α_i и β - эрмитовы матрицы, удоволетворяющие соотношениям:

$$\alpha_i^2 = \beta^2 = 1$$

$$\alpha_i \alpha_j = -\alpha_j \alpha_i \qquad (0.3)$$

$$\alpha_i \beta = -\beta \alpha_i$$

В одном и двух измерениях нам хватает матриц Паули, чтобы записать матрицы Дирака. В трех измерениях не существует более трех матриц 2×2 матриц, которые бы удоволетворяли антикоммутационным соотношениям. Однако, матрицы Дирака 4×4 можно задать следующими соотношениями:

$$\alpha_i = \begin{pmatrix} 0 & \sigma_i \\ \sigma_i & 0 \end{pmatrix} = \sigma_x \otimes \sigma_i, \quad \beta = \sigma_z \otimes 1_{22} \tag{0.4}$$

В 1929 году Вейль обнаружил, что в случа
еm=0уравнение Дирака (0.1) может быть записано как два уравнения:

$$i\frac{\partial}{\partial t}\psi_{\pm} = \pm c\vec{p}\vec{\sigma}\psi_{\pm} \tag{0.5}$$

Где $\psi_{\pm} = \Psi_1 \pm \Psi_2$, когда $\Psi = (\Psi_1, \Psi_2)^T$.

Гамильтониан H_{\pm} задает волновую функцию фермионов с разными киральностями (правые и левые). Спиральность определяется как $\Sigma = \vec{\sigma} \vec{p}$ и ее собственные значения есть $\pm p$.

В случае же твердого тела скорость света в гамильтониане (0.2) заменяется на скорость Ферми v и тогда можно записать спектр гамильтонианов:

$$E = \pm vp, \quad p = \sqrt{p_x^2 + p_y^2 + p_z^2} \tag{0.6}$$

Точка в пространстве импульсов, в которой дисперсия обращается в ноль называ-

ется вейлевской (вейлевским узлом).

В общем случае линейный гамильтониан вблизи вейлевских узлов имеет вид:

$$H = u_{ij} p_i \sigma_j \tag{0.7}$$

Киральность узла определяется как:

$$\chi = \operatorname{sgn} \left\{ \det(u_{ij}) \right\} \tag{0.8}$$

Также стоит отметить, что возмущение вида $\hat{V} = \vec{a}\vec{\sigma}$ не может открыть щель в спектре, а только сдвигает положение вейлевского узла.

Собственные функции гамильтониана есть:

$$\chi_R = \begin{pmatrix} \sin \frac{\theta}{2} \\ -e^{i\varphi} \cos \frac{\theta}{2} \end{pmatrix}, \quad \chi_L = \begin{pmatrix} \cos \frac{\theta}{2} \\ e^{i\varphi} \sin \frac{\theta}{2} \end{pmatrix}$$
(0.9)

Где $\cos \theta = \frac{p_z}{p}$, a $\cos \varphi = \frac{p_y}{p}$.

Рассмотрим модель с одним вейлевским узлом [1]. Тогда введем связность Берри $\vec{A}_{R(L)} = i\chi_{R(L)} \nabla_{\vec{p}}\chi_{R(L)}$. В сферических координатах $\nabla_{\vec{p}} = \left(\frac{\partial}{\partial p}, \frac{1}{p}\frac{\partial}{\partial \theta}, \frac{1}{p\sin\theta}\frac{\partial}{\partial \varphi}\right)$. Таким образом, мы получаем:

$$\vec{A}_R = \left(0, 0, -\frac{\cos^2\frac{\theta}{2}}{p\sin\theta}\right)^T, \quad \vec{A}_L = \left(0, 0, -\frac{\sin^2\frac{\theta}{2}}{p\sin\theta}\right)^T \tag{0.10}$$

В свою очередь кривизна Берри:

$$\vec{\Omega}_{R(L)} = \nabla_{\vec{p}} \times \vec{A}_{R(L)} = \pm \frac{\vec{p}}{2p^3} \tag{0.11}$$

Вычислим заряд вейлевского узла, проинтегрировав кривизну по сфере, охватывающей начало координат:

$$N_{R(L)} = \frac{1}{2\pi} \int d\vec{S} \vec{\Omega}_{R(L)} = \pm 1 \tag{0.12}$$

Проделанная выше выкладка служит иллюстрацией более общей теоремы Нильсена-Ниномии [2], гласящей, что у трансляционно-инвариантного гамильтониана на трехмерной решетке, Фурье-образ которого является гладкой функцией импульса, число правых и левых киральных состояний совпадает.

Арки Ферми

Рассмотрим теперь вопрос существования состояний, локализованных вблизи поверхности образца, а так же их дисперсионных соотношений [3].

Пусть образец занимает область пространства $z \ge 0$. Тогда рассмотрим гамильто-

ниан:

$$H = v\vec{\sigma}\vec{p} \tag{0.13}$$

Задача на собственные значения имеет вид:

$$v\vec{\sigma}\vec{p}\Psi = \epsilon\Psi, \quad \Psi = (u_p, v_p)^T$$

$$(0.14)$$

С граничным условием:

$$\left[u_p - e^{i\chi}v_p\right]\Big|_{z=0} = 0 \tag{0.15}$$

Которое связано с исчезновением тока, направленного по нормали к поверхности образца $j_z = v \Psi^{\dagger} \sigma_z \Psi \propto |u_p|^2 - |v_p|^2$.

В явном виде гамильтониан запишется как:

$$H = \begin{pmatrix} vp_z & v(p_x - ip_y) \\ v(p_x + ip_y) & -vp_z \end{pmatrix} = v \begin{pmatrix} -i\partial_z & |p|e^{i\phi} \\ |p|e^{-i\phi} & i\partial_z \end{pmatrix}$$
(0.16)

Где мы ввели обозначение $p_x - ip_y = |p|e^{i\phi}$. Тогда мы получаем систему из двух уравнений первого порядка на компоненты спинора, которая может быть сведена к одному уравнению второго порядка и уравнению, связывающему компоненты:

$$\begin{cases} u_p'' + \left[\frac{\epsilon^2}{v^2} - |p|^2\right] u_p = 0\\ v_p = e^{-i\phi} \frac{\epsilon + iv\partial_z}{v|p|} u_p \end{cases}$$
(0.17)

Локализованным вблизи границы состояниям соответствуют убывающие решения первого уравнения системы (0.17). Поэтому, введем показатель экспоненты $\kappa = \sqrt{|p|^2 - \frac{\epsilon^2}{v^2}}$ и получим для решения системы:

$$\begin{aligned}
 u_p &= A e^{-\kappa z} \\
 v_p &= A e^{-i\phi} \frac{\epsilon - iv\kappa}{|q|} e^{-\kappa z}
 \tag{0.18}$$

Введем параметризацию $\epsilon = v|p|\cos \alpha, \ \alpha \in (0,\pi), \$ тогда $\kappa = |p|\sin \alpha$. И получаем для граничного условия:

$$e^{i\phi} = \frac{v|p|\cos\alpha - iv|p|\sin\alpha}{v|p|}e^{i\chi} = e^{-i\alpha}e^{i\chi}$$
(0.19)

После чего график дисперсии поверхностных состояний, как параметрически заданная поверхность ($|p|\cos(\alpha - \chi), -|p|\sin(\alpha - \chi), |p|\cos\alpha$), строится очень просто:

Дисперсия представлена плоскостью, отходящей от вейлевского конуса, график представлен на рис.1.

Рис. 1: Ферми арка и вейлевские конусы

Угол χ отвечает лишь за ориентацию полуплоскости относительно конуса, на данном рисунке $\chi = 0$, выбор другого угла лишь поверхнет полуплоскость на этот угол вокруг конусов.

1 Волна Зарядовой Плотности в ВП

Как уже было отмечено выше, большинство возумещений не могут открыть щель в спектре. Щель может открыться только в результате взаимодействия, которое перемешивает фермионы с разными киральностями.

Для простоты рассмотрим модель ВП с двумя вейлевскими узлами, разделенными в пространстве волновым вектором \vec{K}_0 . Гамильтониан имеет вид (в этой части следуем статье [4]):

$$H = H_{0+} + H_{0-} + V \tag{1.1}$$

где:

$$H_{0\pm} = \pm \hbar v_F \sum_{k,\sigma} \psi^{\dagger}_{k,\alpha} \vec{\sigma}_{\alpha\beta} \cdot (\vec{k} \mp \vec{K}_0) \psi_{k,\beta}$$

$$(1.2)$$

$$V = \sum_{\sigma,\sigma'} \sum_{k,k',q} V(q) \psi^{\dagger}_{k'+q,\sigma'} \psi_{k',\sigma'} \psi^{\dagger}_{k-q,\sigma} \psi_{k,\sigma}$$
(1.3)

Мы не конкретизируем конкретный вид взаимодейтсвия, кроме того предположения, что потенциал взаимодействия зависит только от абсолютной величины волнового вектора.

Перепишем невзаимодейтсвующую часть в более удобном для вычисления виде:

$$H_0 = \hbar v_F \zeta_R \sum_{q,\sigma,n=c/v} \psi_{k,\alpha,n}^{R\dagger} \left(\vec{q} \cdot \vec{\sigma} \right)_{\alpha\beta} \psi_{q,\beta,n}^R + \hbar v_F \zeta_L \sum_{q,\sigma,n=c/v} \psi_{q,\alpha,n}^{L\dagger} \left(\vec{q} \cdot \vec{\sigma} \right)_{\alpha\beta} \psi_{q,\beta,n}^L \tag{1.4}$$

здесь ζ_i обзначает киральность данного узла. А само выражение есть просто четырехзонный гамильтониан.

Уравнение Шредингера для невзаимодействующего гамильтониана имеет вид и решение $(n=\pm):$

$$\begin{cases} \pm \hbar v_F \vec{q} \cdot \vec{\sigma} \chi^R_{q,\pm,\sigma} = \pm \hbar v_F |\vec{q}| \chi^R_{q,\pm,\sigma} \\ \mp \hbar v_F \vec{q} \cdot \vec{\sigma} \chi^L_{q,\pm,\sigma} = \pm \hbar v_F |\vec{q}| \chi^L_{q,\pm,\sigma} \end{cases}$$
(1.5)

Где собстсвенные функции имеют вид:

$$\chi_{q,+,\sigma}^{L} = \begin{pmatrix} -\sin\frac{\theta_{q}}{2}e^{-i\phi_{q}} \\ \cos\frac{\theta_{q}}{2} \end{pmatrix}; \chi_{q,+,\sigma}^{R} = \begin{pmatrix} \cos\frac{\theta_{q}}{2}e^{-i\phi_{q}} \\ \sin\frac{\theta_{q}}{2} \end{pmatrix}$$

$$\chi_{q,-,\sigma}^{L} = \begin{pmatrix} \cos\frac{\theta_{q}}{2}e^{-i\phi_{q}} \\ \sin\frac{\theta_{q}}{2} \end{pmatrix}; \chi_{q,-,\sigma}^{R} = \begin{pmatrix} -\sin\frac{\theta_{q}}{2}e^{-i\phi_{q}} \\ \cos\frac{\theta_{q}}{2} \end{pmatrix}$$
(1.6)

Здесь φ_q и θ_q - углы в пространстве импульсов.

Таким же образом можно переписать часть, отвечающую за взаимодействие, в дан-

ном базисе:

$$V = \sum_{\sigma,\sigma'} \sum_{k,k',q} V(q) \psi^{\dagger}_{k'+q,\sigma'} \psi_{k',\sigma'} \psi^{\dagger}_{k-q,\sigma} \psi_{k,\sigma}$$
(1.7)

Выразим, присутствующие операторы через операторы рождения/уничтожения:

$$\psi_{k,n,\sigma}^{R(L)} = \chi_{k,n,\sigma}^{R(L)} c_{k,n}^{R(L)}$$
(1.8)

Нам интересны члены, связывающие разные вейлевские узлы, а так же мы хотим удоволетворить законам сохранения, поэтому получаем:

$$V = \sum_{q,q',n_i} \sum_{\sigma,\sigma'} \left[-2V \left(q - q'\right) \psi_{q,n_1,\sigma'}^{L\dagger} \psi_{q,n_2,\sigma}^R \psi_{q',n_3,\sigma}^{R\dagger} \psi_{q',n_4,\sigma'}^L + 2V \left(2K_0\right) \psi_{q',n_1,\sigma'}^{R\dagger} \psi_{q',n_2,\sigma'}^L \psi_{q,n_3,\sigma}^{L\dagger} \psi_{q,n_4,\sigma}^R \right]$$
(1.9)

Для длиннодейтсвующих потенциалов получаем (мы интересуемся поведением электронов вблизи вейлевского узла, где q = 0, поэтому оставляем самые сингулярные члены):

$$V = -\sum_{q,q'} \sum_{n_i=\pm} \sum_{\sigma,\sigma'} 2V \left(q - q'\right) \psi_{q,n_1,\sigma'}^{L\dagger} \psi_{q,n_2,\sigma}^R \psi_{q',n_3,\sigma}^{R\dagger} \psi_{q',n_4,\sigma'}^L$$
(1.10)

Тогда гамильтониан ВЗП имеет явный вид:

$$H_{\text{CDW}} = \hbar v_F \zeta_R \sum_{q,\alpha,\beta,n=\pm} (\vec{q} \cdot \vec{\sigma})_{\alpha\beta} \psi_{q,\alpha,n}^{R\dagger} \psi_{q,\beta,n}^R + \hbar v_F \zeta_L \sum_{q,\alpha,\beta,n=\pm} (\vec{q} \cdot \vec{\sigma})_{\alpha\beta} \psi_{q,\alpha,n}^{L\dagger} \psi_{q,\beta,n}^L - 2 \sum_{q,q'} \sum_{n_i=\pm} \sum_{\sigma,\sigma'} V(q-q') \psi_{q,n_1,\sigma'}^{L\dagger} \psi_{q,n_2,\sigma}^R \psi_{q',n_3,\sigma}^{R\dagger} \psi_{q',n_4,\sigma'}^L$$
(1.11)

В терминах операторов рождения/уничтожения часть, отвечающая за взаимодействие, имеет вид:

$$V \approx -\sum_{q,q'} V(q-q') G(q,q') \left[c_{q,+}^{L\dagger} c_{q,-}^R c_{q',-}^{R\dagger} c_{q',+}^L + c_{q,-}^{L\dagger} c_{q,+}^R c_{q',+}^{R\dagger} c_{q',-}^L \right]$$
(1.12)

$$G(q,q') = 1 + \cos\theta_q \cos\theta_{q'} + \sin\theta_q \sin\theta_{q'} \cos(\phi_q - \phi_{q'})$$
(1.13)

А часть, отвечающая за кинетическую энергию:

$$H_{0} = \hbar v_{F} \zeta_{R} \sum_{q} \left(K_{+}^{R}(q) c_{q,+}^{R\dagger} c_{q,+}^{R} + K_{-}^{R}(q) c_{q,-}^{R\dagger} c_{q,-}^{R} \right) + \hbar v_{F} \zeta_{L} \sum_{q} \left(K_{+}^{L}(q) c_{q,+}^{L\dagger} c_{q,+}^{L} + K_{-}^{L}(q) c_{q,-}^{L\dagger} c_{q,-}^{L} \right)$$

$$(1.14)$$

$$K_{\pm}^{R(L)}(q) = \chi_{q,\pm}^{R(L)\dagger} \left(\vec{q} \cdot \vec{\sigma} \right) \chi_{q,\pm}^{R(L)}$$
(1.15)

Через углы в пространстве импульсов можно записать:

$$\vec{q} \cdot \vec{\sigma} = |\vec{q}| \begin{pmatrix} \cos \theta_q & \sin \theta_q e^{-i\phi_q} \\ \sin \theta_q e^{i\phi_q} & -\cos \theta_q \end{pmatrix}$$
(1.16)

В предпоследнем выражении можно явно записать:

$$\begin{aligned}
K_{+}^{R}(q) &= |\vec{q}| \\
K_{-}^{R}(q) &= -|\vec{q}| \\
K_{+}^{L}(q) &= -|\vec{q}| \\
K_{-}^{L}(q) &= |\vec{q}|
\end{aligned} (1.17)$$

Зависимость от углов остается только в G(q,q'). Далее мы воспользуемся приближением среднего поля $AB \approx \langle A \rangle B + B \langle A \rangle - \langle A \rangle \langle B \rangle$, где мы ввели параметр порядка ВЗП фазы:

$$\Delta_{\pm(\mp)}^{RL(LR)}(q) = -\sum_{q'} V(q-q') G(q,q') \langle c_{q',n}^{R(L)\dagger} c_{q',-n}^{L(R)} \rangle$$
(1.18)

$$(\Delta_{\pm}^{RL}(q))^* = \Delta_{\mp}^{LR}(q) \tag{1.19}$$

Собирая все написанное выше, мы получаем среднеполевой гамилтониан, где мы можем положить киральность правого узла равной 1, а левого -1:

$$H_{mf} = \hbar v_F \sum_{q} \left(|\vec{q}| c_{q,+}^{R\dagger} c_{q,+}^R - |\vec{q}| c_{q,-}^{R\dagger} c_{q,-}^R \right) + \hbar v_F \sum_{q} \left(|\vec{q}| c_{q,+}^{L\dagger} c_{q,+}^L - |\vec{q}| c_{q,-}^{L\dagger} c_{q,-}^L \right) + \sum_{q} \left(\Delta_{\pm}^{LR}(q) c_{q,-}^{R\dagger} c_{q,+}^L + \Delta_{\mp}^{RL}(q) c_{q,+}^{L\dagger} c_{q,-}^R + \Delta_{\pm}^{LR}(q) c_{q,+}^{R\dagger} c_{q,-}^L + \Delta_{\pm}^{RL}(q) c_{q,-}^{L\dagger} c_{q,+}^R \right)$$
(1.20)

Это уже простой квадратичный гамильтониан, который можно диагонализовать методами аналогичными диагонализации гамильтониана теории экситонного изолятора [5].

При нулевой температуре можно записать уравнение самосогласования для параметра порядка:

$$\Delta(q) = \frac{1}{2} \int V(q-p)G(q,p) \frac{\Delta(p)}{\sqrt{(\hbar v_F |\vec{p}|)^2 + |\Delta(p)|^2}} \frac{d^3p}{(2\pi)^3}$$
(1.21)

Замена $LR \to RL$ не меняет уравнение самосогласования, поэтому мы предположим $\Delta^{RL}_{\pm} = \Delta^{LR}_{\pm} = \Delta$. Далее предполагается изотропный параметр порядка, вопрос о нетривиальной зависимости от импульса в работе не рассматривался.

Таким образом, спектр вейлевского полуметалла в объеме меняется с линейного на:

$$\epsilon_{\pm}(p) = \pm \sqrt{\left(\hbar v_F |\vec{p}|\right)^2 + |\Delta|^2} \tag{1.22}$$

Рис. 2: Кристаллическая решетка и элементарная ячейка (TaSe₄)₂I

1.1 Реализация ВЗП Фазы в ВП

Так как ВЗП возникает в одномерных структурах, а ВП - это трехмерный объект, нужно использовать квазиодномерные структуры. В статье [6] были использован материал (TaSe₄)₂I.

Известно, что $(TaSe_4)_2$ I кристаллизуется в квазиодномерную объемоцентрированную киральную структуру. Обычная ячейка материала содержит две цепочки $TaSe_4$ (рис. 2), расположенные вдоль оси с, и четыре атома йода, разделяющие цепочки.

В зоне Бриллюэна материала находятся 24 пары вейлевских узлов. В статье [6] было показано, что при температуре порядка комнатной из-за квазиодномерной структуры, материал становится неустойчивым по отношению к вормированию волны зарядовой плотности (ВЗП). Экспериментально было выяснено, что состояние ВЗП "спаривает" узлы с разными киральностями и, таким образом, открывает щель в спектре.

2 Поверхностные Электронные Состояния

Займемся исследованием спектра поверхностных электронных состояний.

Геометрия задачи следующая: образец занимает пространство $z \ge 0$.

Простейший одночастичный гамильтониан такой задачи при учете перемешивания состояний с различными киральностями имеет вид:

$$\epsilon - H = G^{-1} = \epsilon - (\boldsymbol{\sigma} \cdot \boldsymbol{p} - 1) \tau_3 - \Delta \tau_1.$$
(2.1)

Здесь τ_i обозначают матрицы Паули, дейтсвующие в пространстве вейлевских узлов, а σ_i соответствуют матрицам Паули, действующим в спиновом пространстве. Мы таже выбрали энергетическую отстройку между вейлевскими узлами равной единице энергии.

Можно заметить, что оператор спиральности $\Sigma = \sigma p$ коммутирует с гамильтонианом, а значит, решения с заданной киральностью будут так же и собственными функциями гамилтониана:

$$\boldsymbol{\sigma} \boldsymbol{p} \Psi_{\alpha} = \alpha \boldsymbol{p} \Psi_{\alpha}. \tag{2.2}$$

Здесь $\alpha = \pm 1$ - это спиральность состояния, а p - абсолютная величина импульса:

$$p = |\mathbf{p}| = \sqrt{|q|^2 - \kappa^2}, \quad \kappa^2 = |q|^2 - p^2.$$
 (2.3)

Здесь мы предположили экспоненциальное затухание решений вглубь образца $\vec{p} = (q_x, q_y, i\kappa)$

Таким образом энергетический спектр поверхностных состояний:

$$\epsilon^2 = (p - \alpha)^2 + \Delta^2, \quad p = \alpha \pm \sqrt{\epsilon^2 - \Delta^2}.$$
 (2.4)

Над щелью, $\epsilon^2 > \Delta^2$, *p* есть вещественное число. Так как *p* обозначает абсолютную величину импульса, мы должны предположить, что он положительный.Таким образом, только решения с положительной спиральностью, $\alpha = +1$, должны быть использованы:

$$p_{\pm} = 1 \pm \sqrt{\epsilon^2 - \Delta^2}.\tag{2.5}$$

Из (2.3) следует, что κ тоже должна быть действительным для затухающих решений. Нормируемая волновая функция соответствует значениям κ с положительной действительной частью, которые даются выражением:

$$\kappa_{\pm} = \sqrt{|q|^2 - \left(1 \pm \sqrt{\epsilon^2 - \Delta^2}\right)^2}.$$
(2.6)

Мы будем записывать решения уравнения Ψ как $\Psi = (\vec{u}, \vec{w})^T$, где $\vec{u} = (u, v)$ и $\vec{w} = (w, h)$.

Граничные условия будем считать, соответсвующими случаю без щели:

$$\begin{pmatrix} u \\ w \end{pmatrix} = \hat{M} \begin{pmatrix} v \\ h \end{pmatrix} \Big|_{z=0}, \quad \hat{M} = \begin{pmatrix} e^{i\chi_u} & 0 \\ 0 & e^{i\chi_v} \end{pmatrix}$$
(2.7)

2.1 Надщелевые Состояния

Займемся исследованием состояний с $\epsilon^2 > \Delta^2$. Мы можем параметризовать энергию следующим образом: $\epsilon = \Delta \cosh \gamma$, $\gamma > 0$. Такая параметризация верна для положительных энергий, расположенных над щелью.

Услови
е $|q|>1+\Delta\sinh\gamma$ дает нам область, в которой есть два связанных надщелевых состоя
ния.

Введем углы θ_{\pm} следующим образом:

$$\kappa_{\pm} = |q| \sin \theta_{\pm}, \quad p_{\pm} = |q| \cos \theta_{\pm}. \tag{2.8}$$

Из этого следует:

$$\exp(i\theta_{\pm}) = \frac{1 \pm \sqrt{\epsilon^2 - \Delta^2} + i\sqrt{|q|^2 - (1 \pm \sqrt{\epsilon^2 - \Delta^2})^2}}{|q|}$$
(2.9)

Таким образом мы можем переписать уравнение (2.2) для спиральности $\alpha = +1$ более простым способом:

$$\begin{pmatrix} e^{-i\theta_{\pm}} & -e^{-i\phi} \\ -e^{i\phi} & e^{i\theta_{\pm}} \end{pmatrix} \begin{pmatrix} u_{\pm} \\ v_{\pm} \end{pmatrix} = 0, \qquad (2.10)$$

где $(q_x, q_y) = |q|(\cos \phi, \sin \phi)$. В полном виде уравнение запишется как:

$$\begin{pmatrix} 1 \pm \sqrt{\epsilon^2 - \Delta^2} - i\sqrt{|q|^2 - (1 \pm \sqrt{\epsilon^2 - \Delta^2})^2} & -q \\ -\bar{q} & 1 \pm \sqrt{\epsilon^2 - \Delta^2} + i\sqrt{|q|^2 - (1 \pm \sqrt{\epsilon^2 - \Delta^2})^2} \end{pmatrix} \begin{pmatrix} u_{\pm} \\ v_{\pm} \end{pmatrix} = 0$$

$$(2.11)$$

Отношение компонент спинора равно:

$$\frac{u_{\pm}}{v_{\pm}} = e^{i(\theta_{\pm} - \phi)} = e^{-i\phi} \frac{1 \pm \Delta \sinh \gamma + i\sqrt{|q|^2 - (1 \pm \Delta \sinh \gamma)^2}}{|q|}$$
(2.12)

В *т*-подпространстве два решения удоволетворяют уравнению:

$$\begin{pmatrix} \epsilon - p_{\pm} + 1 & -\Delta \\ -\Delta & \epsilon + p_{\pm} - 1 \end{pmatrix} \begin{pmatrix} \vec{u}_{\pm} \\ \vec{v}_{\pm} \end{pmatrix} = 0.$$
 (2.13)

Откуда следует связь:

$$\vec{u}_{\pm} = e^{\pm\gamma} \vec{v}_{\pm}.\tag{2.14}$$

Таким образом, общее решение для связанных состояний записывается как:

$$\Psi = \begin{pmatrix} e^{\gamma} \vec{v}_{+} \\ \vec{v}_{+} \end{pmatrix} + r \begin{pmatrix} e^{-\gamma} \vec{v}_{-} \\ \vec{v}_{-} \end{pmatrix}$$
(2.15)

где r - комплексная константа

2.1.1 Граничные Условия для Надщелевых Состояний

Важным условием для нахождения правильной дисперсии является написание верных граничных условий для спиноров.

Граничное условие для \vec{v} - компонент спинора, следующее из уравнения (2.7) записывается как:

$$e^{-i\phi} \left(e^{i\theta_+} + r e^{i\theta_-} \right) = e^{i\chi_v} (1+r),$$
 (2.16)

Эквивалентным образом, его можно записать, как:

$$\frac{1 + re^{i(\theta_{-}-\theta_{+})}}{1+r} = e^{i(\chi_{v} + \phi_{-}\theta_{+})}.$$
(2.17)

Из этого следует ограничение на аргумент r,

$$\bar{r} = r e^{i(\theta_- - \theta_+)}.\tag{2.18}$$

Введя обозначения:

$$\delta\theta \equiv \theta_{+} - \theta_{-}, \quad \bar{\theta} \equiv \frac{\theta_{+} + \theta_{-}}{2} \tag{2.19}$$

Получаем два решения, удоволетворяющие ограничению:

$$\operatorname{Arg}(r) = \frac{\delta\theta}{2}, \quad \operatorname{Arg}(r) = \frac{\delta\theta}{2} + \pi.$$
 (2.20)

Таким образом, получаем для уравнения (2.16) решение в виде:

$$r = e^{i\frac{\delta\theta}{2}}\frac{\sin\frac{\chi_v + \phi - \theta_+}{2}}{\sin\frac{\chi_v + \phi - \theta_-}{2}}.$$
(2.21)

Если $\sin \frac{\chi_v + \phi - \theta_{\pm}}{2}$ одного знака, то выполняется первый случай в ур. (2.20). Если знаки $\sin \frac{\chi_v + \phi - \theta_{\pm}}{2}$ различны - второй.

Граничные условия для \vec{u} компонент 4-спинора получаются из ур. (2.16) заменой $r \to r e^{-2\gamma}$ и $\chi_v \to \chi_u$. Так как аргумент r не зависит от угла χ_i из граничных условий и дается выражением (2.20), мы получаем:

$$\frac{1 \pm |r|e^{-i\delta\theta/2}}{1 \pm |r|e^{i\delta\theta/2}} = e^{i(\chi_v + \phi - \theta_+)},$$
(2.22a)

$$\frac{1 \pm |r|e^{-i\delta\theta/2 - 2\gamma}}{1 \pm |r|e^{i\delta\theta/2 - 2\gamma}} = e^{i(\chi_u + \phi - \theta_+)}.$$
(2.22b)

Поскольку $\delta\theta$ - величина маленькая, физически верные решения отвечает знаку "минус". В таком случае, если величина |r| близка к единице, возможно удоволетворить граничным условиям длже если разность $\chi_u - \chi_v$ велика.

Выбрав минус, получаем в ур. (2.22):

$$\frac{1 - |r|e^{-i\delta\theta/2}}{1 - |r|e^{i\delta\theta/2}} = e^{i(\chi_v + \phi - \theta_+)},$$
(2.23a)

$$\frac{e^{2\gamma} - |r|e^{-i\delta\theta/2}}{e^{2\gamma} - |r|e^{i\delta\theta/2}} = e^{i(\chi_u + \phi - \theta_+)}.$$
(2.23b)

Из первого уравнения следует:

$$|r| = \frac{e^{i\delta\theta/2} - e^{-i\delta\theta/2}e^{i(\chi_v + \phi - \theta_-)}}{1 - e^{i(\chi_v + \phi - \theta_-)}} = \frac{\sin(\chi_v + \phi - \theta_+)/2}{\sin(\chi_v + \phi - \theta_-)/2}.$$
(2.24)

Результат для второго получается заменой $\chi_v \to \chi_u$, и $|r| \to |r| e^{2\gamma}$,

$$|r| = e^{2\gamma} \frac{\sin(\chi_u + \phi - \theta_+)/2}{\sin(\chi_u + \phi - \theta_-)/2}.$$
(2.25)

Подставив (2.25) в (2.24), получаем:

$$\sin(\chi_v + \phi - \theta_+)/2 \sin(\chi_u + \phi - \theta_-)/2 = e^{2\gamma} \sin(\chi_v + \phi - \theta_-)/2 \sin(\chi_u + \phi - \theta_+)/2.$$
(2.26)

2.1.2 Внешняя Граница Непрерывного Спектра

Рассмотрим случай касания спектра надщелевых состояний с вейлевским конусом. Это соответствует значению модуля импульса $|q| = 1 + \sqrt{\epsilon^2 - \Delta^2}$, или $\theta_+ = 0$ в ур. (2.9). В таком случае из (2.9) следует для θ_- :

$$e^{i\theta_{-}} = \frac{1 + i(\epsilon^{2} - \Delta^{2})^{1/4}}{1 - i(\epsilon^{2} - \Delta^{2})^{1/4}} = \frac{1 + i\sqrt{\Delta\sinh\gamma}}{1 - i\sqrt{\Delta\sinh\gamma}}.$$
(2.27)

Для относительно малых энергий $(\Delta \sinh \gamma \ll 1)$ следует:

$$\theta_{-} \approx 2\sqrt{\Delta \sinh \gamma} \ll 1.$$

Раскладывая ур. (2.26) по малым θ_{-} , мы получаем:

$$\left[e^{-2\gamma} - 1\right] \sin\frac{(\chi_v + \phi)}{2} \sin\frac{(\chi_u + \phi)}{2} = \frac{\theta_-}{2} \left[e^{-2\gamma} \sin\frac{(\chi_v + \phi)}{2} \cos\frac{(\chi_u + \phi)}{2} - \cos\frac{(\chi_v + \phi)}{2} \sin\frac{(\chi_u + \phi)}{2}\right]$$
(2.28)

Вблизи дна континуума, $\gamma \ll 1$, получаем:

$$\sin\frac{(\chi_v + \phi)}{2} \sin\frac{(\chi_u + \phi)}{2} = -\frac{1}{2}\sqrt{\frac{\Delta}{\gamma}} \sin\frac{(\chi_v - \chi_u)}{2}.$$
 (2.29)

2.2 Подщелевые Состояния

Теперь рассмотрим область $|\epsilon| < \Delta$. В таком случае из ур. (2.5) следует:

$$p_{\pm} = 1 \pm i\sqrt{\Delta^2 - \epsilon^2} = 1 \pm i\Delta\sin\tilde{\gamma}, \qquad (2.30)$$

где была введена параметризация $\tilde{\gamma} \in (0, \pi)$.

Уравнения (2.13) и (2.14) связывающие u
иvкомпоненты 4-спинора заменяются на:

$$\vec{u}_{\pm} = e^{\pm i\tilde{\gamma}} \vec{v}_{\pm}.\tag{2.31}$$

Углы θ_{\pm} в Eqs. (2.8) и (2.9) становятся комплексными и даются выражениями:

$$\exp(i\theta_{\pm}) = \frac{1 \pm i\Delta\sin\tilde{\gamma} + i\sqrt{|q|^2 - (1 \pm i\Delta\sin\tilde{\gamma})^2}}{|q|}.$$
(2.32)

Так как $\cos \theta_{\pm} = (1 \pm i \Delta \sin \tilde{\gamma})/|q|$, для $||q| - 1| \ll 1$, что соответствует импульсам вблизи импульса Ферми, мы получаем:

$$\theta_{\pm}^2 \approx 2\left(|q| - 1 \mp i\Delta\sin\tilde{\gamma}\right). \tag{2.33}$$

Таким образом, мы должны выбрать θ_{\pm} комплексно сопряженными друг к другу:

$$\theta_{\pm} \approx \sqrt{2\left(|q| - 1 \mp i\Delta\sin\tilde{\gamma}\right)}.$$
(2.34)

Здесь аргумент корня предполагается стремящимся к нулю при $|q| \to +\infty$. Такой выбор обеспечивает $\text{Re}\theta_{\pm} > 0$, что необходимо для нормализуемости волновых функций связанных состояний.

Снова введем (на этот раз комплексные) переменные

$$\theta_{\pm} = \bar{\theta} \pm \frac{\delta\theta}{2}, \quad \bar{\theta} = \frac{\theta_{+} + \theta_{-}}{2}, \quad \delta\theta = \theta_{+} - \theta_{-},$$
(2.35)

где угол $\bar{\theta}$ действительный, а $\delta\theta$ чисто мнимый. Таким образом, из ур.(2.33) мы получаем:

$$\bar{\theta}^2 + \frac{(\delta\theta)^2}{4} = 2(|q| - 1),$$
(2.36a)

$$\bar{\theta}\delta\theta = -2i\Delta\sin\tilde{\gamma}.\tag{2.36b}$$

Что можно переписать как:

$$\bar{\theta}^2 = |q| - 1 + \sqrt{(\Delta \sin \tilde{\gamma})^2 + (|q| - 1)^2}, \qquad (2.37a)$$

$$\delta\theta = -\frac{2i}{\bar{\theta}}\Delta\sin\tilde{\gamma}.$$
(2.37b)

Мы должны выбрать положительный знак перед квадратным корнем, чтобы $\bar{\theta}$ остался действительным.

2.2.1 Граничные Условия для Подщелевых Состояний

Общее решение имеет вид:

$$\begin{pmatrix} e^{i\tilde{\gamma}}\vec{v}_{+}\\\vec{v}_{+} \end{pmatrix} + r \begin{pmatrix} e^{-i\tilde{\gamma}}\vec{v}_{-}\\\vec{v}_{-} \end{pmatrix}.$$
(2.38)

Граничное условие для v - компонент биспинора (2.16) не меняется и имеет вид:

$$r = -\frac{e^{i(\chi_v + \phi - \bar{\theta} + \delta\theta/2)} - e^{i\delta\theta}}{e^{i(\chi_v + \phi - \bar{\theta} + \delta\theta/2)} - 1}$$

$$r = -e^{i\frac{\delta\theta}{2}} \frac{\sin\frac{(\chi_v + \phi - \theta_+)}{2}}{\sin\frac{(\chi_v + \phi - \theta_-)}{2}}.$$
(2.39)

Граничное условие на u - компоненты получается заменой $\chi_v \to \chi_u$ и $r \to r e^{-2i\tilde{\gamma}}$,

$$r = -e^{2i\tilde{\gamma}}e^{i\frac{\delta\theta}{2}}\frac{\sin\frac{(\chi_u+\phi-\theta_+)}{2}}{\sin\frac{(\chi_u+\phi-\theta_-)}{2}}.$$
(2.40)

Подставив (2.40) в (2.39), получаем

$$e^{2i\tilde{\gamma}}\sin\frac{(\chi_u + \phi - \theta_+)}{2}\sin\frac{(\chi_v + \phi - \theta_-)}{2} = \sin\frac{(\chi_v + \phi - \theta_+)}{2}\sin\frac{(\chi_u + \phi - \theta_-)}{2}.$$
 (2.41)

2.2.2 Спектр Подщелевых Состояний

Упростим (2.41) следующим образом:

$$0 = -e^{2i\tilde{\gamma}} \sin \frac{(\bar{\chi} + \phi - \bar{\theta} - (\delta\theta + \delta\chi)/2)}{2} \sin \frac{(\bar{\chi} + \phi - \bar{\theta} + (\delta\theta + \delta\chi)/2)}{2} + \sin \frac{(\bar{\chi} + \phi - \bar{\theta} - (\delta\theta - \delta\chi)/2)}{2} \sin \frac{(\bar{\chi} + \phi - \bar{\theta} + (\delta\theta - \delta\chi)/2)}{2} = i \sin \tilde{\gamma} e^{i\tilde{\gamma}} \left[\cos(\bar{\chi} + \phi - \bar{\theta}) - \cos \frac{\delta\chi}{2} \cos \frac{\delta\theta}{2} + i \cot \tilde{\gamma} \sin \frac{\delta\chi}{2} \sin \frac{\delta\theta}{2} \right].$$
(2.42)

Отсюда видно, что для энергий, расположенных под щелью, угол арки ϕ может быть получен из решения следующего уравнения:

$$\cos(\bar{\chi} + \phi - \bar{\theta}) = \cos\frac{\delta\chi}{2}\cos\frac{\delta\theta}{2} - i\cot\tilde{\gamma}\sin\frac{\delta\chi}{2}\sin\frac{\delta\theta}{2}, \quad \tilde{\gamma} \in (0,\pi)$$
(2.43)

Так как, $\delta \theta$ чисто мнимое для подщелевых состояний, оба члена в правой части уравнения - действительные.

В случае, когда правая часть (2.43) равна ±1, происходит слияние двух решений, на языке спектров это значит, что две арки касаются по кривой в пространстве.

Рис. 3: Подщелевой спектр вблизи Ферми-поверхности для $\delta\chi=\pi$

2.2.3 Область вблизи Ферми-Поверхности

Для $||q|-1| \ll 1$ из уравнений (2.37) следует $\bar{\theta}^2 \ll 1$. Таким образом, в этой области можно упростить ур. (2.43) следующим образом:

$$\cos(\bar{\chi} + \phi) = \cos\frac{\delta\chi}{2}\cosh\frac{\Delta\sin\tilde{\gamma}}{\bar{\theta}} - \cot\tilde{\gamma}\sin\frac{\delta\chi}{2}\sinh\frac{\Delta\sin\tilde{\gamma}}{\bar{\theta}} = \\ = \cos\frac{\delta\chi}{2}\cosh\frac{\Delta\sin\tilde{\gamma}}{\sqrt{|q| - 1 + \sqrt{(\Delta\sin\tilde{\gamma})^2 + (|q| - 1)^2}}} - \\ -\cot\tilde{\gamma}\sin\frac{\delta\chi}{2}\sinh\frac{\Delta\sin\tilde{\gamma}}{\sqrt{|q| - 1 + \sqrt{(\Delta\sin\tilde{\gamma})^2 + (|q| - 1)^2}}}.$$
(2.44)

Для $\delta\chi=\pi$ график зависимости энергии от компонент импульса показана на рис.(3)

Рис. 4: Полярный угол ϕ как функция $\tilde{\gamma}$

2.2.4 Слияние Двух Решений

Когда правая часть ур.(2.43) становится равной +1 или -1 это уравнение имеет лишь одно решение.

Область слияния решений дается кривой на плоскости $(|q|, \tilde{\gamma})$ и меняется с $\delta \chi$. Для $\delta \chi = \pi$, функция $|q|(\tilde{\gamma})$ имеет симметрию $|q|(\tilde{\gamma}) = |q|(\pi - \tilde{\gamma})$

Когда правая часть уравнения равна +1, мы получаем:

$$\bar{\chi} + \phi = \bar{\theta} \tag{2.45}$$

Когда правая часть уравнения равна -1, мы получаем:

$$\bar{\chi} + \phi = \bar{\theta} + \pi \tag{2.46}$$

Это может быть записано как:

$$\cos\left(\bar{\chi} + \phi\right) = \pm \sqrt{\frac{1 + \cos\theta_{+} \cos\theta_{-} - \sin\theta_{+} \sin\theta_{-}}{2}}$$
$$\sin\left(\bar{\chi} + \phi\right) = \pm \sqrt{\frac{1 - \cos\theta_{+} \cos\theta_{-} + \sin\theta_{+} \sin\theta_{-}}{2}}$$
(2.47)

Эта кривая будет нарисована далее на рис.(5).

Так же можно заметить, что при $\delta \chi = \pi$ и близких значениях к этому, величина полярного угла ϕ , как функции энергии $(\tilde{\gamma})$ - есть величина практически постоянная, имеющая скачок вблизи $\tilde{\gamma} = \frac{\pi}{2}$. Эта зависимость показана на рис.(4.)

2.2.5 Нулевая Энергия

Из (2.43) следует, что при нулевой энергии, когда $\tilde{\gamma}=\frac{\pi}{2}$ состояния существуют при:

$$\cos^{2}(\delta\chi/2)\cos^{2}(\delta\theta/2) = \frac{1}{4}[1+\cos\delta\chi][1+\cos\delta\theta] \le 1$$
 (2.48)

Что можно записать эквивалентным образом как:

$$\frac{1}{4}\left[1 + \cos\delta\chi\right]\left(1 + \frac{1 + \Delta^2}{|q|^2} + \frac{1}{|q|^2}\sqrt{\left[(|q| - 1)^2 + \Delta^2\right]\left[(|q| + 1)^2 + \Delta^2\right]}\right) \le 1$$
(2.49)

Таким образом, мы получаем:

$$\sqrt{\left[(|q|-1)^2 + \Delta^2\right]\left[(|q|+1)^2 + \Delta^2\right]} \le \frac{4|q|^2}{1 + \cos\delta\chi} - |q|^2 - 1 - \Delta^2 \tag{2.50}$$

Так как квадратный корень в левой части уравнения всегда положителен, неравенство сверху эквивалентно системе:

$$\begin{cases} |q|^{2} \frac{3 - \cos \delta \chi}{1 + \cos \delta \chi} \geq 1 + \Delta^{2} \\ [(|q| - 1)^{2} + \Delta^{2}] [(|q| + 1)^{2} + \Delta^{2}] = (|q|^{2} + 1 + \Delta^{2})^{2} - 4|q|^{2} \leq \left(\frac{4|q|^{2}}{1 + \cos \delta \chi} - |q|^{2} - 1 - \Delta^{2}\right)^{2} \\ (2.51) \end{cases}$$

Эти условия можно переписать как:

$$\begin{cases} |q|^2 \ge \frac{(1+\cos\delta\chi)(1+\Delta^2)}{3-\cos\delta\chi} \\ |q|^2 \ge -\frac{1}{2}(1+\cos\delta\chi) \left[1+\frac{2\Delta^2}{1-\cos\delta\chi}\right] \end{cases}$$
(2.52)

Последнее неравенство тривиально выполняется, так как правая часть неравенства всегда отрицательна.

В свою очередь, первое неравенство дает области значений импульса, в которых могут существовать связанные состояния. В частности, при $\delta \chi = \pi$ мы получаем $|q| \ge 0$, а значит могут сущестовать состояния со сколь угодно малыми импульсами

2.3 Спектр Поверхностых Состояний

По аналогии с (2.43) можно записать уравнение для надщелевых состояний:

$$\cos(\bar{\chi} + \phi - \bar{\theta}) = \cos\frac{\delta\chi}{2}\cos\frac{\delta\theta}{2} + \coth\gamma\sin\frac{\delta\chi}{2}\sin\frac{\delta\theta}{2}, \quad \gamma > 0$$
(2.53)

Это поможет при анализе спектра всех состояний.

Так как сдвиг $\phi \to \phi' = \bar{\chi} + \phi$ влияет лишь на поворот графика $\epsilon(q_x, q_y)$ вокруг оси ϵ ,

Рис. 5: Спектр поверхностных и объемных состояний. Красным цветом обозначен спектр подщелевых состояний. Зеленым - надщелевых. Желто-синяя линия - это спектр слившихся в одно состояний.

можно для упрощения использовать именно эту величину. График спектра поверхностных состояний дается двумерной параметрически заданной поверхностью ($|q|\cos\phi', |q|\sin\phi', \epsilon\cos\tilde{\gamma}$) для подщелевых состояний и ($|q|\cos\phi', |q|\sin\phi', \pm\epsilon\cosh\gamma$) для надщелевых состояний. Таким образом, график для $\delta\chi = \pi$ изображен на рис.(5)

Из рис.(5.) мы видим, что в случае спектра с щелью, возникающего в ВЗП фазе вейлевского полуметалла, спектр подщелевых состояний идет между зонами, разделенными щелью и соединяет их. Таким образом, хоть в объеме образец является изолятором, его поверхностные состояния могут быть проводящими.

Для большей наглядности имеет смысл рассмотреть сечение спектра подщелевых состояний плоскостями постоянной энергии. На рис.(6) представлены сечения при величине щели $\Delta = 0.1$ для параметра, характеризующего величину энергии $\tilde{\gamma}$.

Также имеет смысл рассмотреть сечение спектра плоскостью постоянного полярного угла ϕ , который представлен на рис.(7).

Рис. 6: Сечение плоскостью постоянной энергии

Рис. 7: Сечение плоскостью постоянного полярного угла

Заключение

В работе были исследованы последствия возникновения ВЗП нестабильности в вейлевском полуметалле. Был получен среднеполевой гамильтониан, описывающий систему. Было получено уравнение самосогласования для параметра порядка ВЗП фазы.

Далее в предположении изотропного параметра порядка был исследован спектр поверхностных состояний. Из граничных условий на волновые функции гамильтониана были получены и исследованы уравнения, дающие нам спектр.

Главный результат работы заключается в том, что вейлевский полуметалл в ВЗП фазе (в данной модели) является трехмерным топологическим изолятором.

Список литературы

- Shun-Qing Shen, "Topological Insulators. Dirac Equation in Condensed Matter". Second Edition, Springer Nature Singapore Pte Ltd. 2017
- [2] H.B. Nielsen and M. Ninomiya. "The adler-bell-jackiw anomaly and weyl fermions in a crystal". Physics Letters B, 130(6):389 – 396, 1983.
- [3] Songci Li and A. V. Andreev, "Spiraling Fermi arcs in Weyl materials". Phys. Rev. B 92, 201107(R) (2015)
- [4] Huazhou Wei, Sung-Po Chao, and Vivek Aji, "Excitonic Phases from Weyl Semimetals Phys. Rev. Lett. 109, 196403 (2012)
- [5] D. Jérome, T. M. Rice, and W. Kohn, "Excitonic Insulator". Phys. Rev. 158, 462 (1967)
- [6] Shi, W., Wieder, B.J., Meyerheim, H.L. et al. "A charge-density-wave topological semimetal". Nat. Phys. 17, 381–387 (2021)